Statistical Tools of Pedagogical Research

Authors

  • N. Rudenko Senior Lecturer at the Department of Primary Education of the Faculty of Pedagogical Education Borys Grinchenko Kyiv Metropolitan University, Candidate of Pedagogical Sciences, Kyiv, Ukraine https://orcid.org/0000-0002-6274-9311

DOI:

https://doi.org/10.28925/2311-2409.2024.428

Keywords:

задачі математичної статистики, е-ресурси длятистична гіпотеза, статистична статистичного аналізу, критерії узгодження, методи математичної статистики, ста

Abstract

Due to the active development of scientific and technological progress, mathematical science has impacted
on all scientific fields, including pedagogy. A crucial element is enhancing the quality of pedagogical research
through the organization of experiments, the evaluation of acquired scientific data, and the validation of these
results employing methods of mathematical statistics. The complexities involved in the proper implementation
of statistical methods in pedagogical research arise from the necessity to investigate qualitative attributes
of phenomena and events, requiring the alignment of research objectives and content with the appropriate
mathematical and statistical techniques. Statistics seeks to provide relevant evidence to the claims of experts
in various fields using mathematical methods to reach a consensus on making appropriate decisions based
on statistical information.
The article theoretically highlights mathematical and statistical methods in pedagogical research when
organizing an experiment, evaluating acquired scientific data and verifying the reliability of these results usingmethods of mathematical statistics. It defines the main concepts of the research, namely: mathematical statistics,
problems of mathematical statistics, methods of mathematical statistics, statistical literacy, statistical hypothesis,
criteria of agreement, e-resources for statistical analysis.
The main mathematical methods used in pedagogical research have been selected, and the algorithm for testing
statistical hypotheses in pedagogical research has been provided. The statistical criteria of agreement have been
identified for testing the hypothesis about the type of distribution of a random variable (Pearson, Fisher, Student),
and modern e-resources for calculating the criteria of agreement (JASP, PSPP, DataMelt, Sisense and others),
as well as some online calculators, have been discussed

Downloads

Download data is not yet available.

References

Герич М. С., Синявська О. О. Математична статистика: навч. посібник. Ужгород, ДВНЗ «УжНУ»,

, 146 с.

Грисенко М. В., Рижов А. Ю. Математична статистика для економістів міжнародників. Київ :

ВПЦ «Київ. ун-т», 261 с.

Мієр Т. І., Бондаренко Г. Л. Дослідницькі основи інноваційної складової професійної підготовки

вчителя початкової школи з використанням європейського та вітчизняного досвіду. Освіта і суспільство VI: Міжнародний збірник наукових праць. С. 262–271. URL: https://elibrary.kubg.edu.ua/id/

eprint/36169

Остапенко Я. О. Використання PSPP під час статистичного аналізу. Східна Європа: економіка, бізнес та управлінн. № 13, c. 254–265. URL: http://www.easterneurope-ebm.in.ua/journal/13_2018/46.pdf

Паламар С. П., Кондратюк С. Г. Системний підхід до формування навичок проведення науково-педагогічного дослідження. Молодий вчений. № 10.2 (50.2). 2017. С. 65–69. URL: https://elibrary.

kubg.edu.ua/id/eprint/21902/1/S_Palamar__S_Kondratiuk_SAFS_2017_PI.pdf

Brydges, C & Gaeta, L. (2019). An Introduction to Calculating Bayes Factors in JASP for Speech,

Language, and Hearing Research. Journal of Speech, Language, and Hearing Research. 62(12): 4523–

doi:10.1044/2019_JSLHR-H-19-0183. PMID 31830850. S2CID 209342577

Callingham, R., Carmichael, C., & Watson, J. (2016). Explaining Student Achievement: The influence

of teachers’ pedagogical contentknowledge in statistics. International Journal of Science and Mathematics

Education, 2016, 14, 1339–1357. DOI:10.1007/s10763-015-9653-2

Chick, H., Pierce, R., & Wander, R. (2014). Sufficiently Assessing Teachers’ Statistical Literacy. ICOTS9

(2014) Invited Paper – Refereed.

https://iase-web.org/icots/9/proceedings/pdfs/ICOTS9_7C3_WANDER.pdf?1405041694

Gal, I. (2002) Adults’ Statistical Literacy: Meanings, components, responsibilities. Int. Stat. Rev. 2002,

, 1–25.

Gonda, D., Pavlovičová, G., Ďuris, V., & Tirpáková, A. (2022). Implementation of Pedagogical Research

into Statistical Courses to Develop Students’ Statistical Literacy. Mathematics 2022, 10(11), 1793; https://

doi.org/10.3390/math10111793

Jonathon Love, Ravi Selker, Maarten Marsman, et al (2019) JASP: Graphical Statistical Software

for Common Statistical Designs. Journal of Statistical Software, January 2019, 88(2), 1–13 DOI:10.18637/

jss.v088.i02

Pierce, R., Chick, H., Watson, J., Les, M., & Dalton, M. (2014). A Statistical Literacy Hierarchy for

Interpreting Educational System Data. Aust. J. Educ. 2014, 58, 195–217.

Wagenmakers, E., Love ,J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., et al (2018). Bayesian inference

for psychology. Part II: Example applications with JASP». Psychonomic Bulletin & Review. 25(1): 58–76.

doi:10.3758/s13423-017-1323-7. PMC 5862926. PMID 28685272

Watson, J. (1997) Assessing Statistical Literacy through the Use of Media Surveys. In The Msessment

Chullenge in Statistics Education; Gal, I., Garfield, J., Eds.; International Statistical Institutel IOS Press:

Amsterdam, The Netherlands, 1997; pp. 107–121.

REFERENCES

Herych, M. S., Syniavska, O. O. (2021) Matematychna statystyka [Mathematical Statistics]. 146 p.

[in Ukrainian].

Hrysenko, M. V., & Ryzhov, A. Yu. (2011). Matematychna statystyka dlia ekonomistiv mizhnarodnykiv

[Mathematical Statistics for International Economists]. 261 p. [in Ukrainian].

Miyer, T. I., & Bondarenko, H. L. (2021). Doslidnytski osnovy innovatsiinoi skladovoi profesiinoi

pidhotovky vchytelia pochatkovoi shkoly z vykorystanniam yevropeiskoho ta vitchyznianoho dosvidu

[Research Basis of the Innovative Component of Professional Training of Primary School Teachers Using

European and Domestic Experience]. Osvita i suspilstvo, VI, pp. 262–271 ISSN 978–83–66567–26–9

[in Ukrainian].

Ostapenko, Ya. O. (2018). Vykorystannia PSPP pid chas statystychnoho analizu [Use of the PSPP

in Statistical Analysis]. Skhidna Yevropa: ekonomika, biznes ta upravlinnia, 13, pp. 254–265 [in Ukrainian].

http://www.easterneurope-ebm.in.ua/journal/13_2018/46.pdf

Palamar, S. P., & Kondratiuk, S. H. (2017). Systemnyi pidkhid do formuvannia navychok provedennia

naukovo-pedahohichnoho doslidzhennia [A systematic approach to the formation of skills in scientific and

pedagogical research]. Molodyi vchenyi (10.2), pp. 65–69. ISSN 2304-5809 [in Ukrainian].

Brydges, C., & Gaeta, L. (2019). An Introduction to Calculating Bayes Factors in JASP for Speech,

Language, and Hearing Research. Journal of Speech, Language, and Hearing Research, 62(12): 4523–4533

[in English].

doi:10.1044/2019_JSLHR-H-19-0183. PMID 31830850. S2CID 209342577

Callingham, R., Carmichael, C., & Watson, J. (2016). Explaining Student Achievement: The influence

of teachers’ pedagogical contentknowledge in statistics. International Journal of Science and Mathematics

Education, 2016, 14, 1339–1357. DOI:10.1007/s10763-015-9653-2 [in English].

Chick, H., Pierce, R., & Wander, R. (2014). Sufficiently assessing teachers’ statistical literacy. ICOTS9

(2014) Invited Paper — Refereed [in English].

https://iaseweb.org/icots/9/proceedings/pdfs/ICOTS9_7C3_WANDER.pdf?1405041694

Gal, I. (2002). Adults’ Statistical Literacy: Meanings, components, responsibilities. Int. Stat. Rev. 2002,

, 1–25 [in English].

Gonda, D., Pavlovičová, G, Ďuris, V, & Tirpáková, A. (2022). Implementation of Pedagogical

Research into Statistical Courses to Develop Students’ Statistical Literacy. Mathematics 2022, 10 (11), 1793

[in English].

https://doi.org/10.3390/math10111793

Jonathon Love, Ravi Selker, Maarten Marsman, et al (2019). JASP: Graphical Statistical Software

for Common Statistical Designs. Journal of Statistical Software, January 2019, 88(2), DOI:10.18637/jss.

v088.i02 [in English]

Pierce, R., Chick, H., Watson, J., Les M., & Dalton, M. (2014). A Statistical Literacy Hierarchy

for Interpreting Educational System Data. Aust. J. Educ. 2014, 58, 195–217 [in English].

Wagenmakers, E., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., et al (2018). Bayesian inference

for psychology. Part II: Example applications with JASP». Psychonomic Bulletin & Review, 25 (1): 58–76

[in English].

doi:10.3758/s13423-017-1323-7 PMC 5862926. PMID 28685272

Watson, J. (1997). Assessing Statistical Literacy through the Use of Media Surveys. In The Msessment

Chullenge in Statistics Education; Gal, I., Garfield, J., Eds.; International Statistical Institutel IOS Press:

Amsterdam, The Netherlands, 1997; pp. 107–121 [in English].

Downloads


Abstract views: 40

Published

2024-10-23

How to Cite

Rudenko, N. (2024). Statistical Tools of Pedagogical Research. Pedagogical Education: Theory and Practice. Psychology. Pedagogy, (42(2), 59–67. https://doi.org/10.28925/2311-2409.2024.428

Issue

Section

Applied aspects of vocational and pedagogical education